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S1 Design and optimization of the surface-emitting 1×3 Dammann grating 

In the main text, the number of diffraction orders in a grating is determined by the ratio between 

its period and the Bragg period (ΛBragg = λ/2neff). The grating period is selected based on the 

principle that light inputted from both the left and right sides can seamlessly cover as large a field 

of view (FOV) as possible, while minimizing the number of diffraction orders within the 

operational wavelength range of our tunable laser source. As illustrated in Fig. S1(a), a planar 

silicon grating with a 1-μm-thick SiO2 cladding layer generates multiple diffractive orders (Bragg 

period ~0.6 μm). We simulated the far fields of gratings with different periods (duty cycle η = 0.5) 

fed with different wavelengths. When two lights from the tunable laser (1480~1640 nm) are input 

from both the left and right sides, the multiple diffracted beams effectively cover a broader FOV, 

as depicted in Figs. S1(b)~(f). With the period Λx = 2.16 μm (Fig. S1(e)), the FOV is 180°, but the 

intersection wavelengths between different diffraction orders are close to the edge of the 

wavelength range. Meanwhile, with the period Λx = 2.7 μm (Fig. S1(f)), diffraction orders +3 

through +5 and −3 through −5 can theoretically cover a 180° FOV in a wavelength range of 125 

nm.  
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Here, the powers of different diffraction orders are not equal, whereas the Dammann grating can 

radiate diffraction orders of equal power. However, no literature discussion on surface-emitting 

silicon-based gratings exists. To make the diffracted light equally distributed to diffraction orders 

3~5, we simulated a Dammann grating with a width W = 0.5 um and optimized each inversion 

point of the Dammann grating using a particle swarm optimization (PSO) algorithm. To guarantee 

a large and uniform power distribution of the outgoing beams, we defined the figure of merit (FoM) 

as 

 ( ) ( ) ,i iFoM avg P Pσ= −   S(1) 

where Pi is the power of diffraction orders 3~5, avg is the mean function, and σ is the standard 

deviation function. Fig. S2(b) illustrates that after 300 iterations, the FoM converges to 

5.46655×10−7. As shown in Figs. S2(c), the powers of diffraction orders 3~5 in the optimized 

Dammann grating are uniform in a wavelength range of 160 nm, and the optimized positions of 

the inverse points are given in Table S1. 
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Fig. S1 (a) Simulated far fields 10log|E|2 of the grating with varying periods ranging from 0.5 μm to 3 μm. (b)~(f), 

Simulated far fields with different grating periods Λ = 0.54~2.7 μm in the wavelength range of 1480~1640 nm. 

 

Fig. S2 (a) Three-dimensional schematic of the Dammann grating. (b) FoM vs. iteration in the PSO. (c) Far fields of 

the optimized Dammann grating with dual-directional inputs. 

Table S1 Structural parameters of the optimized 1×3 Dammann grating. 

Λ L1 L2 L3 L4 L5 L6 

2.6 μm 0.349 μm 0.282 μm 0.305 μm 0.838 μm 0.160 μm 0.666 μm 

 

S2 Design and optimization of the waveguide-grating directional coupler 

The light intensity within a grating diminishes exponentially, typically posing no issue in grating 

couplers with lengths shorter than 15 μm. However, as depicted in Fig. S3(a), nearly all light (99%) 

is emitted into free space within the initial 35-μm-long grating, and the subsequent grating 

structures barely impact the far-field pattern. Extending the grating length does not proportionally 

scale the aperture size, limiting the numerical aperture of a vertical-radiation orbital angular 

momentum (OAM) grating to approximately 35 μm. Nevertheless, by compensating for the 

emitted light power such that the power distribution conforms to an approximately Gaussian 
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distribution in the grating, the aperture of the grating can be expanded. To address this aspect, we 

have developed a waveguide-grating directional coupler (WG-DC) structure comprising a 

Dammann grating and a rectangular waveguide.  

The gap between the waveguide and the grating was decomposed to the trigonometric series 

∑[ancos(nx)+bnsin(nx)], and coefficients an and bn were optimized using the PSO algorithm in 

MATLAB. Note that as the structure is symmetric along the x-axis because of the requirement for 

bi-directional input, the antisymmetric term bnsin(nx) can be neglected. The power in the bend 

waveguide and the Dammann grating can be expressed as follows: 
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where Pw and Pg represent the optical powers in the waveguide and grating, respectively, and κwg 

and κgw denote the coupling efficiencies between the waveguide and the grating. In the phase-

matched DC structure, the propagation constant β in the waveguide is equal to that of the grating. 

The parameter α represents the attenuation coefficient of the light propagating through the grating, 

and its values are fitted by a 25-μm-long Dammann grating simulation in FDTD, as outlined in 

Section S3.  

Here, to ensure that the power distribution in the grating closely resembles a Gaussian distribution, 

we define the FoM as follows 

 ( ) ( )( )1 XCorr , | , ,FoM P x f x µ σ= −   S(3) 

where XCorr represents the normalized cross-correlation of two discrete sequences, and f(x|μ,σ) 

represents the normal distribution with μ = Lgrating/2 and σ = L2
grating/16. The gap parameters, an, 

converge to the same value sets after 10 rounds of 200 iterations each in the PSO algorithm, as 
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shown in Fig. S3(b). The obtained WG-DC structure is depicted in Fig. S3(c). When light is 

launched into the waveguide, the gap initially widens, leading to weaker WG coupling. However, 

as the waveguide and grating gradually approach each other, the WG coupling strengthens. Beyond 

the midpoint, the structure of the WG-DC becomes axisymmetric with respect to the y-axis. The 

power distributions at 1490, 1590, and 1690 nm are illustrated in Figs. S3(d) and S3(e). The 

simulated diffraction efficiencies of the devices over the wavelength range of 1490~1690 nm are 

as follows: 0.115833, 0.213162, 0.235019, 0.256978, and 0.196928. This trend closely follows the 

power data PB at different wavelengths shown in Fig.S3(d), with slight deviations that may explain 

the reduced mesh accuracy of the 3D FDTD simulation. Additionally, Fig. S3(f) provides a 3D 

schematic of the proposed Dammann grating. 
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Fig. S3 Optimisation of the 1×3 Dammann grating. (a) 99% optical power is radiated in the first 35-μm long 70-nm 

shallow-etched grating. (b) All 10 PSO algorithms converge to the same FOM and parameters. (c) Gap vs. 

propagation direction and the top view of the WG-DC structure. (d) and (e), Calculated and simulated optical 

powers in Dammann grating and the waveguide for three wavelengths, respectively. (f), Three-dimensional 

schematic of the optical power distribution in the WG-DC structure for left input. 

S3 Fitting of the attenuation coefficient in the Dammann grating 

To acquire the attenuation coefficients of the grating at various wavelengths, we performed 

simulations using a 25-μm-long Dammann grating in the finite-difference time domain (FDTD) 

(Fig. S4(a)). The mode source was transverse electric (TE) light, and nine power monitors were 

strategically placed every other period (2.6 μm) to collect transmittance data over distance (Fig. 

S4(b)). The transmission values were fitted to the function y = Aeαx, and the resulting attenuation 

coefficients at different wavelengths are presented in Table S2. 
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Fig. S4 (a) Setup of the proposed Dammann grating in the FDTD simulation. (b) Transmissions at various distances 

in the Dammann grating for the wavelength range of 1490–1690 nm and their corresponding fitted curves. 

Table S2 Attenuation coefficients of the proposed 1×3 Dammann grating at different wavelengths. 

λ [nm] 1480  1500  1520  1540  1560  1580  1600  1620  1640 

A 0.83 0.83 0.77 0.85 0.85 0.86 0.87 0.87 0.67 

α×104 –9.8 –9.6 –9.6 –7.9 –7.7 –7.3 –7.0 –6.9 –8.8 
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S4 Fitting the far field to OAM light 

The fabricated OAM-optical phased array (OPA) chip exhibits fabrication errors on each 

waveguide, resulting in random optical phases for the 56 lights input into the 56 gratings. 

Consequently, the far-field pattern is disorganized rather than forming a clear donut shape, as 

shown in Fig. S5(a). To address this issue, we utilized 56 thermal phase shifters to adjust the light 

phase in each waveguide, ensuring that their relative phase difference was zero. Although aligning 

the far-field spot to maximize the power of the spot is a straightforward approach in conventional 

OPA, this method is not feasible for OAM light. We developed a method to fit the theoretical field 

distribution from the far-field spot to the OAM light. By minimizing the difference between the 

far-field spot and the theoretical donut shape, the phases of the lights in the input waveguides can 

be aligned. The proposed algorithm initially employs a genetic algorithm (GA), and after 50 

iterations, gradient descent (GD) methods are utilized for fine optimization. The forked grating 

diffracts OAM light in the Laguerre-Gaussian mode, defined as 
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where Cpl is a constant, ω0 is the waist radius, Lp
|ℓ|(x) represents the generalized Laguerre 

polynomials, and p and l are the radial and angular-momentum quantum numbers, respectively. 

Assuming that p = 0, and thus L0
|l| (ς) = 1, the power distribution of the vortex is 
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Converting Eq. S(5) into Cartesian coordinates yields 
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Four parameters are fitted in MATLAB, namely Cℓ, ω0, x0, and y0. As illustrated in Fig. S5, after 

100 generations of GA and GD optimization, the initially randomly distributed far field of OAM+4 

was successfully aligned to a donut shape. We conducted far-field measurements and optimization 

for all lights in the wavelength range of 1505~1625 nm with all positive topological charges (left 

input) within ±20°.  

Given the symmetry of the far field of the Dammann grating from both the left and right inputs, 

we only measured the far fields with negative topological charges and the far fields for the right 

input with an emission angle φ of 0°. 

 

Fig. S5 (a) and (b) Initial far-field patterns before and after phase alignment, respectively. The aligned far field 

exhibits a donut shape, indicating successful phase alignment. (c) R2 vs. iteration in the GA optimization. (d) With a 

17dBm output power of the laser, two donut-shaped spots (OAM3 and OAM4) can be observed using a NIR detector 

card. 



9 

 



10 

 

Fig. S6 Measured far fields of the OAM±3, OAM±4, and OAM±5 with emission angles φ of −20°, −20°, 0°, +10°, and 

+20°. 

S5 Simulations and fabrication of other silicon devices 

We also conducted simulations on other silicon-based components incorporated into the OPA chip. 

As illustrated in Fig. S7, the results indicate that the insertion losses for the 1×2 MMI and the edge 

coupler are lower than 0.5 dB and 2.9 dB, respectively, across the wavelength range of 1480~1680 

nm. Additionally, scanning electron microscopy (SEM) images of these silicon devices are 

presented in Figs. S7(e) and S7(f), providing a detailed visual representation. 
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Fig. S7 Simulated power distributions, transmission, and SEM images of 1×2 MMI and forked edge coupler. 
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